

Technical Debt

How Software Organizations Can Stay Solvent

Prof. dr.ir. Paris Avgeriou - paris@cs.rug.nl

Software Engineering and Architecture Group

http://www.cs.rug.nl/~paris/

The Known Universe

Rankings - Top 100 university

4/20/2017 | 3

#80 Times Higher Education Worldwide

#72 Academic Ranking of World Universities

#86 U.S. News 'Best Global Universities Ranking'

Founded in 1614

Research Philosophy

14

- Core business: Software Architecture
- > With Dutch & European industry (real problems)
 - Embedded Systems & Enterprise Applications
- > Automated Software Engineering
- > Evidence-based Software Engineering
 - Evidence matters empirical research methods

Söftware

- > Introducing the metaphor
- > Emergence of TD
- > Concepts of TD and management
- > Present and Future

"Shipping first time code is like going into debt. A little debt speeds development so long as it is paid back promptly with a rewrite ..."

"The danger occurs when the debt is not repaid. Every minute spent on not-quite-right code counts as interest on that debt. Entire engineering organizations can be brought to a stand-still under the debt load of an unconsolidated implementation, object-oriented or otherwise."

Ward Cunningham, The WyCash portfolio management system, OOPSLA '92

Technical Debt is a collection of design or implementation constructs*

that are expedient in the short term,
but set up a technical context that
can make future changes more costly or impossible

Dagstuhl April 2016

- * 1. Immature artifacts
 - 2. Postponed tasks

Technical Debt illustrated

4/20/2017 | 10

Images from https://refactoring.guru/smells

Technical Debt metaphor

- > Debt is a necessary tradeoff
 - Loan for investment
 - Quality-- for business value++
- > Pay back *principal* (fix TD) + *interest* (maintain SW)
- Complete payoff may be unrealistic
- > Debt should be monitored and managed
 - Risk accumulation may spiral out of control
- > Both a metaphor and a SW Dev artifact

- > Introducing the metaphor
- **Emergence of TD**
- > Concepts of TD and management
- > Present and Future

US\$361,000 of technical debt*

Curtis et al. "Estimating the Principal of an Application's TD," IEEE Software '12

Is this really new?

4/20/2017 | 10

Communities

- > Maintenance & evolution
- > Reengineering / refactoring

Terms

- > Aging
- > Decay
- > Sustainability
- > Little progress
- > "Dull" topic

Convergence of SE disciplines

4/20/2017 | 1

- > Program analysis/comprehension
- > SW Quality measurement
- > Qualitative research methods
- > SW risk management

MTD>sum of parts!

Söftware

SCHLOSS DAGSTUHL

Leibniz-Zentrum für Informatik

Z. Li et al., A systematic mapping study on technical debt and its management, JSS 2015

- > Introducing the metaphor
- > Emergence of TD
- > Concepts of TD and management
- > Present and Future

Debt=Principal+Interest

4/20/2017 | 22

Ampatzoglou et al., A Financial Approach for Managing Interest in TD, BMSD '15

Vicious circle of technical debt

university of groningen Breaking point: principal vs. interest

Ampatzoglou et al., A Financial Approach for Managing Interest in TD, BMSD '15

Types of TD

Not quite right

- Code
- > Requirements
- > Architecture
- > Design
- > Test
- > Build
- > Documentation
- > Infrastructure
- > Versioning

• • •

Technical debt is pervasive

- > Code
- > Requirements
- > Architecture <
- > Design
- > Test
- > Build
- > Documentation
- > Infrastructure
- > Versioning

Complex dependencies
Architecture smells
Architecture drift

- > Code
- > Requirements
- > Architecture
- > Design
- > Test
- > Build
- > Documentation
- > Infrastructure
- > Versioning

Low code coverage
Lack of test automation
Expensive tests
Residual defects not found

- > Code
- > Requirements
- > Architecture
- > Design
- > Test
- > Build
- > Documentation
- > Infrastructure
- > Versioning

Insufficient/incomplete/out of date Lack of code comments

Managing TD

4/20/2017 | 36

- > TD prevention
- > TD identification
- > TD measurement
- > TD prioritization
- > TD monitoring
- > TD repayment
- > TD representation/documentation
- > TD communication

Li et al., Architectural Debt Management in Value-oriented Architecting, Elsevier '14

Managing TD

4/20/2017 | 38

- > TD prevention
- > TD identification
- > TD measurement
- > TD prioritization
- > TD monitoring
- > TD repayment
- > TD representation/documentation
- > TD communication

Mathematical models
Code metrics
Human estimation

Li et al. Architecture viewpoints for documenting ATD, Elsevier 2016

Managing TD

4/20/2017 | 41

- > TD prevention
- > TD identification
- > TD measurement
- > TD prioritization
- > TD monitoring
- > TD repayment
- > TD representation/docy
- > TD communication

TD dashboard
Backlog
Dependency visualization
Code metrics visualization
TD propagation visualization

atlon

Technical debt in Backlog

Philippe Kruchten, Technical debt – From metaphor to theory and practice, IEEE SW2012.

- > Introducing the metaphor
- > Emergence of TD
- > Concepts of TD and management
- > Present and Future

Main thesis

- > Technical debt grows
- > Managing TD is **dominant** in SW evolution
 - Established as a core SE practice
- > It's the next big thing
 - ++ Investment
 - -- Bankruptcy

State of the art

- > From source code to the whole lifecycle
- > Glossaries and ontologies (convergent)
- > Tooling (industrial & prototypes)
- > Economic theories

Breaking the metaphor

- People who collect TD ≠ people who repay TD
- > Relating TD to an interest rate or interest period
- > TD can be unintentional
- > TD does not always have to be repaid
- > TD does not necessarily have a bad side

State of practice

4/20/2017 | 47

SW engineers

- > Understand the concept and challenges
- > Deal with it during maintenance
- > TD management in place but with constraints
 - Resource-intensive
 - Realistically only a portion managed

Join the community!

- > Source code -> architecture
 - Automatic detection of (architecture) smells
- > Economic theories for sound investments
 - Business value to intrinsic qualities/refactoring
- > Automating identification and measuring
 - Data mining in SW repositories
- > Benchmarking
- > Teach TD in school
 - Throughout the curriculum

Thank you

Credits: Zengyang Li

Philippe Kruchten Peng Liang

Robert Nord Areti Ampatzoglou

Ipek Ozkaya Apostolos Ampatzoglou

Carolyn Seaman Alexander Chatzigeorgiou