
4/20/2017 | 1

Technical Debt
How Software Organizations Can Stay Solvent

Prof. dr.ir. Paris Avgeriou - paris@cs.rug.nl

Software Engineering and Architecture Group

http://www.cs.rug.nl/~paris/

mailto:paris@cs.rug.nl

The Known Universe

 | 2

4/20/2017 | 3

Rankings - Top 100 university

Founded in 1614

#80 Times Higher Education
Worldwide

#72 Academic Ranking
of World Universities

#86 U.S. News ‘Best Global
Universities Ranking’

 | 4

Research Philosophy

› Core business: Software Architecture

› With Dutch & European industry (real problems)

• Embedded Systems & Enterprise Applications

› Automated Software Engineering

› Evidence-based Software Engineering

• Evidence matters - empirical research methods

4/20/2017 | 5

Outline

› Introducing the metaphor

› Emergence of TD

› Concepts of TD and management

› Present and Future

“Shipping first time code is like going into debt. A
little debt speeds development so long as it is paid
back promptly with a rewrite … ”

“The danger occurs when the debt is not repaid.
Every minute spent on not-quite-right code counts
as interest on that debt. Entire engineering
organizations can be brought to a stand-still under
the debt load of an unconsolidated implementation,
object-oriented or otherwise. ”

Ward Cunningham, The WyCash portfolio management system, OOPSLA ‘92

Technical Debt is a collection of design or
implementation constructs*

that are expedient in the short term,

but set up a technical context that

can make future changes more costly or impossible

Dagstuhl April 2016

* 1. Immature artifacts

 2. Postponed tasks

4/20/2017 | 8

Technical Debt illustrated

4/20/2017 | 10

Images from https://refactoring.guru/smells

Technical Debt metaphor

› Debt is a necessary tradeoff

• Loan for investment

• Quality-- for business value++

› Pay back principal (fix TD) + interest (maintain SW)

› Complete payoff may be unrealistic

› Debt should be monitored and managed

• Risk – accumulation may spiral out of control

› Both a metaphor and a SW Dev artifact

4/20/2017 | 11

4/20/2017 | 12

Outline

› Introducing the metaphor

› Emergence of TD

› Concepts of TD and management

› Present and Future

For every 100 KLOC an average
software application had approx.

US$361,000 of technical debt*

*B. Curtis et al. “Estimating the Principal of an Application’s TD,” IEEE Software ‘12

Technical Debt

Is this really new?

Communities

› Maintenance & evolution

› Reengineering / refactoring

Terms

› Aging

› Decay

› Sustainability

› Little progress

› “Dull” topic

4/20/2017 | 16

Convergence of SE disciplines

› Program analysis/comprehension

› SW Quality measurement

› Qualitative research methods

› SW risk management

MTD>sum of parts!

4/20/2017 | 17

4/20/2017 | 19

Z. Li et al., A systematic mapping study on technical debt and its management,
JSS 2015

4/20/2017 | 20

Outline

› Introducing the metaphor

› Emergence of TD

› Concepts of TD and management

› Present and Future

Debt=Principal+Interest

4/20/2017 | 22

Ampatzoglou et al., A Financial Approach for Managing Interest in TD, BMSD ‘15

Vicious circle of technical debt

4/20/2017 | 23

Incur TD
Lower

Dev
Velocity

Business
Pressure

Breaking point: principal vs. interest

4/20/2017 | 25

Ampatzoglou et al., A Financial Approach for Managing Interest in TD, BMSD ‘15

Types of TD

4/20/2017 | 26

Martin Fowler 2009

Just the code?

Not quite right

› Code

› Requirements

› Architecture

› Design

› Test

› Build

› Documentation

› Infrastructure

› Versioning
 …

4/20/2017 | 29

Technical debt is pervasive

Just the code?

› Code

› Requirements

› Architecture

› Design

› Test

› Build

› Documentation

› Infrastructure

› Versioning

4/20/2017 | 30

Complex dependencies
Architecture smells
Architecture drift

Just the code?

› Code

› Requirements

› Architecture

› Design

› Test

› Build

› Documentation

› Infrastructure

› Versioning

4/20/2017 | 32

Low code coverage
Lack of test automation

Expensive tests
Residual defects not found

Just the code?

› Code

› Requirements

› Architecture

› Design

› Test

› Build

› Documentation

› Infrastructure

› Versioning

4/20/2017 | 33

Insufficient/incomplete/out of date
Lack of code comments

4/20/2017 | 35

Managing TD

› TD prevention

› TD identification

› TD measurement

› TD prioritization

› TD monitoring

› TD repayment

› TD representation/documentation

› TD communication

4/20/2017 | 36

Li et al., Architectural Debt Management in Value-oriented Architecting, Elsevier ‘14

Managing TD

› TD prevention

› TD identification

› TD measurement

› TD prioritization

› TD monitoring

› TD repayment

› TD representation/documentation

› TD communication

4/20/2017 | 38

Mathematical models
Code metrics

Human estimation

ATD item

Benefit of ATD item in Release V16.2

ATD1

ATD2

ATD3

ATD4

ATD5

ATD6

ATD7

ATD8

ATD9

ATD10

Cost of ATD item in Release V16.1

ATD cost amount (Person-day)

100200300

ATD benefit amount (Person-day)

100 300200

Total

Threshold

Benefit of ATD item in Release V16.1

Cost of ATD item in Release V16.2

Li et al. Architecture viewpoints for documenting ATD, Elsevier 2016

Managing TD

› TD prevention

› TD identification

› TD measurement

› TD prioritization

› TD monitoring

› TD repayment

› TD representation/documentation

› TD communication

4/20/2017 | 41

TD dashboard
Backlog

Dependency visualization
Code metrics visualization

TD propagation visualization

Technical debt in Backlog

Visible Invisible

Positive
Value

New features
Added
functionality

Architectural,
structural
features

Negative
Value

Defects
Technical
debt

Philippe Kruchten, Technical debt – From metaphor to theory and practice, IEEE SW2012.

4/20/2017 | 43

Outline

› Introducing the metaphor

› Emergence of TD

› Concepts of TD and management

› Present and Future

Main thesis

› Technical debt grows

› Managing TD is dominant in SW evolution

• Established as a core SE practice

› It’s the next big thing

++ Investment

-- Bankruptcy

4/20/2017 | 44

State of the art

› From source code to the whole lifecycle

› Glossaries and ontologies (convergent)

› Tooling (industrial & prototypes)

› Economic theories

4/20/2017 | 45

Breaking the metaphor

› People who collect TD ≠ people who repay TD

› Relating TD to an interest rate or interest period

› TD can be unintentional

› TD does not always have to be repaid

› TD does not necessarily have a bad side

4/20/2017 | 46

State of practice

SW engineers

› Understand the concept and challenges

› Deal with it during maintenance

› TD management in place but with constraints

• Resource-intensive

• Realistically only a portion managed

4/20/2017 | 47

SW Engineers
don’t like TD

Managers don’t
mind TD

Short deadline
vs.

Long-term sustainability

Communication bridge
Investment opportunity

Join the community!

› Source code -> architecture

• Automatic detection of (architecture) smells

› Economic theories for sound investments

• Business value to intrinsic qualities/refactoring

› Automating identification and measuring

• Data mining in SW repositories

› Benchmarking

› Teach TD in school

• Throughout the curriculum

4/20/2017 | 49

Thank you

Credits:

Philippe Kruchten

Robert Nord

Ipek Ozkaya

Carolyn Seaman

Zengyang Li

Peng Liang

Areti Ampatzoglou

Apostolos Ampatzoglou

Alexander Chatzigeorgiou

